Automatic Boundary Sizing for 2d and 3d Meshes

نویسندگان

  • Alexandre Cunha
  • Scott Canann
  • Sunil Saigal
چکیده

1 ABSTRACT The numerical solution of problems in science and engineering via the finite element method requires, as a first step, the discretization of a domain into a set of simply shaped elements. Determining the size of these elements along the domain, including the boundary, to form well-shaped elements is a difficult task. We present in this paper a simple technique, called smart sizing, which automatically computes high quality initial element sizing on curves for triangular, quadrilateral and tetrahedral elements. Curve divisions are computed based on curve and surface curvatures as well as feature proximity. In the three dimensional case, refinement of facets is performed as needed to create reasonably sized surface elements. Computing a boundary mesh appropriately is a key step to successfully determine the size and distribution of new elements towards the interior of the domain, especially for the advancing front and constrained Delaunay meshing techniques. The approach presented here is geometry based and does not attempt to account for the physics of the problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developement of multigrid methods for convergence acceleration of solvers for Navier-Stokes equations on non-structured meshes

The objective of the study is to develop an algorithm for automatic directional coarsening of anisotropic meshes based on the finest level mesh to provide coarser meshes for geometric multigrid. Characteristic parameters of the meshes are high aspect ratio (of order 10 near the profile). The meshes are assumed to have a layer structure in boundary-layer zones. The aim of the study is to design ...

متن کامل

Modified Fixed Grid Finite Element Method to Solve 3D Elasticity Problems of Functionally Graded Materials

In the present paper, applicability of the modified fixed grid finite element method in solution of three dimensional elasticity problems of functionally graded materials is investigated. In the non-boundary-fitted meshes, the elements are not conforming to the domain boundaries and the boundary nodes which are used in the traditional finite element method for the application of boundary condit...

متن کامل

Modified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems

In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...

متن کامل

Modified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems

In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...

متن کامل

3D reconstruction of dental specimens from 2D histological images and microCT-scans.

Direct comparison of experimental and theoretical results in biomechanical studies requires a careful reconstruction of specimen surfaces to achieve a satisfactory congruence for validation. In this paper a semi-automatic approach is described to reconstruct triangular boundary representations from images originating from, either histological sections or microCT-, CT- or MRI-data, respectively....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997